前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。

PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取
python免费学习资料以及群交流解答点击即可加入

环境需求

基础环境沿用之前的环境,只是增加了MongoDB(非关系型数据库)和PyMongo(Python 的 MongoDB 连接库),默认我认为大家都已经安装好并启动 了MongoDB 服务。

测试爬虫效果

我这里先写一个简单的爬虫,爬取用户的关注人数和粉丝数,代码如下:

import scrapy

class ZhuHuSpider(scrapy.Spider):
    """
    知乎爬虫
    """
    name = 'zhuhu'
    allowed_domains = ['zhihu.com']
    start_urls = ['https://www.zhihu.com/people/wo-he-shui-jiu-xing/following']

    def parse(self, response):
        # 他关注的人数
        tnum = response.css("strong.NumberBoard-itemValue::text").extract()[0]
        # 粉丝数
        fnum = response.css("strong.NumberBoard-itemValue::text").extract()[1]
        print("他关注的人数为:%s" % tnum)
        print("他粉丝的人数为:%s" % fnum)

pychram中运行的结果如下:
在这里插入图片描述
出现500错误了,我们加上headers再试试,我们直接在settings.py中设置,如下:
在这里插入图片描述
再次执行看看结果:
在这里插入图片描述
这次就正常获取到我们需要的信息了

爬取分析

我们就用中本聪的主页作为分析入口吧,主页如下:
https://www.zhihu.com/people/satoshi_nakamoto/following
分析用户关注列表如下:在这里插入图片描述
鼠标放到用户图像上,会显示详细信息如下:在这里插入图片描述
这里要注意我用的是火狐浏览器,选择网络–XHR来获取信息

ajax技术的核心是XMLHttpRequest对象(简称XHR),这是由微软首先引入的一个特性,其他浏览器提供商后来都提供了相同的实现。XHR为向服务器发送请求和解析服务器响应提供了流畅的接口,能够以异步方式从服务器取得更多信息,意味着用户单击后,可以不必刷新页面也能取得新数据。

通过上面的请求我们可以获取的连接如下:

#用户详细信息
https://www.zhihu.com/api/v4/members/li-kang-65?include=allow_message,is_followed,is_following,is_org,is_blocking,employments,answer_count,follower_count,articles_count,gender,badge[?(type=best_answerer)].topics

https://www.zhihu.com/api/v4/members/jin-xiao-94-7?include=allow_message,is_followed,is_following,is_org,is_blocking,employments,answer_count,follower_count,articles_count,gender,badge[?(type=best_answerer)].topics

#关注的人信息
https://www.zhihu.com/api/v4/members/satoshi_nakamoto/followees?include=data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics&offset=0&limit=20

通过分析上面的链接可以看出

1.用户详细信息链接组成:https://www.zhihu.com/api/v4/members/{user}?include={include}
其中user是用户的url_token,include是allow_message,is_followed,is_following,is_org,is_blocking,employments,answer_count,follower_count,articles_count,gender,badge[?(type=best_answerer)].topics

2.关注人信息链接组成:https://www.zhihu.com/api/v4/members/satoshi_nakamoto/followees?include={include}&offset={offset}&limit={limit}
其中include为data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics,offset为分页偏移量,limit为每页用户数量,可以通过下图看出:

第一页
在这里插入图片描述
第二页
在这里插入图片描述
第三页在这里插入图片描述

开始爬取

我们还是先写一个简易的爬虫,把功能先实现,代码如下:

import scrapy

class ZhuHuSpider(scrapy.Spider):
    """
    知乎爬虫
    """
    name = 'zhuhu'
    allowed_domains = ['zhihu.com']
    # 用户详细信息地址
    user_detail = 'https://www.zhihu.com/api/v4/members/{user}?include={include}'
    # 用户详细信息中的include
    user_include = 'allow_message,is_followed,' \
                   'is_following,' \
                   'is_org,is_blocking,' \
                   'employments,' \
                   'answer_count,' \
                   'follower_count,' \
                   'articles_count,' \
                   'gender,' \
                   'badge[?(type=best_answerer)].topics'
    # 关注的人地址
    follow_url = 'https://www.zhihu.com/api/v4/members/{user}/followees?include={include}&offset={offset}&limit={limit}'
    # 关注的人include
    follow_include = 'data[*].answer_count,' \
                     'articles_count,' \
                     'gender,' \
                     'follower_count,' \
                     'is_followed,' \
                     'is_following,' \
                     'badge[?(type=best_answerer)].topics'
    # 初始user
    start_user = 'satoshi_nakamoto'

    def start_requests(self):
        # 这里重新定义start_requests方法,注意这里的format用法
        yield scrapy.Request(self.user_detail.format(user=self.start_user, include=self.user_include),
                             callback=self.parse_user)
        yield scrapy.Request(self.follow_url.format(user=self.start_user, include=self.follow_include, offset=20, limit=20),
                             callback=self.parse_follow)

    def parse_user(self, response):
        print('user:%s' % response.text)

    def parse_follow(self, response):
        print('follow:%s' % response.text)

输出结果如下:
在这里插入图片描述
这里需要注意的是authorization信息一定要在headers中添加,不然会报错,authorization在headers中的形式如下:在这里插入图片描述
.测试发现authorization值在一段时间内是不会发生变化的,是否永久不变还有待考证。

parse_user编写

parse_user方法用来解析用户的详细数据,存储并发现此用户的关注列表,返回给parse_follow方法来处理,用户详细存储字段如下:
在这里插入图片描述
为了省事我把所有字段都添加到items.py中(如果运行spider后报错,提示字段未找到,就将那个字段添加进来即可),如下:

class UserItem(scrapy.Item):
    """
    定义了响应报文中json的字段
    """
    is_followed = scrapy.Field()
    avatar_url_template = scrapy.Field()
    user_type = scrapy.Field()
    answer_count = scrapy.Field()
    is_following = scrapy.Field()
    url = scrapy.Field()
    type = scrapy.Field()
    url_token = scrapy.Field()
    id = scrapy.Field()
    allow_message = scrapy.Field()
    articles_count = scrapy.Field()
    is_blocking = scrapy.Field()
    name = scrapy.Field()
    headline = scrapy.Field()
    gender = scrapy.Field()
    avatar_url = scrapy.Field()
    follower_count = scrapy.Field()
    is_org = scrapy.Field()
    employments = scrapy.Field()
    badge = scrapy.Field()
    is_advertiser = scrapy.Field()

parse_user方法代码如下:

    def parse_user(self, response):
        """
        解析用户详细信息方法
        :param response: 获取的内容,转化为json格式
        """
        # 通过json.loads方式转换为json格式
        results = json.loads(response.text)
        # 引入item类
        item = UserItem()
        # 通过循环判断字段是否存在,存在将结果存入items中
        for field in item.fields:
            if field in results.keys():
                item[field] = results.get(field)
        # 直接返回item
        yield item
        # 将获取的用户通过format方式组合成新的url,调用callback函数交给parse_follow方法解析
        yield scrapy.Request(self.follows_url.format(user=results.get('url_token'),
                                                     include=self.follow_include, offset=0, limit=20),
                             callback=self.parse_follow)

parse_follow方法编写

首先也要将获取的response转换为json格式,获取关注的用户,对每一个用户继续爬取,同时也要处理分页。可以看下面两个图:
在这里插入图片描述
在这里插入图片描述
重新编写后的parse_follow方法如下:

    def parse_follow(self, response):
        """
        解析关注的人列表方法
        """
        # 格式化response
        results = json.loads(response.text)
        # 判断data是否存在,如果存在就继续调用parse_user解析用户详细信息
        if 'data' in results.keys():
            for result in results.get('data'):
                yield scrapy.Request(self.user_detail.format(user=result.get('url_token'), include=self.user_include),
                                     callback=self.parse_user)
        # 判断paging是否存在,如果存在并且is_end参数为False,则继续爬取下一页,如果is_end为True,说明为最后一页
        if 'paging' in results.keys() and results.get('paging').get('is_end') == False:
            next_page = results.get('paging').get('next')
            yield scrapy.Request(next_page, callback=self.parse_follow)

运行爬虫后的结果如下图:
在这里插入图片描述
可以看到一直在获取内容。

存入mongodb

item pipeline

存储使用MongoDB,我们需要修改Item Pipeline,参照官网示例修改的代码如下:

class ZhiHuspiderPipeline(object):
    """
    知乎数据存入monogodb数据库类,参考官网示例
    """

    collection_name = 'user'

    def __init__(self, mongo_uri, mongo_db):
        """
        初始化参数
        :param mongo_uri:mongo uri
        :param mongo_db: db name
        """
        self.mongo_uri = mongo_uri
        self.mongo_db = mongo_db

    @classmethod
    def from_crawler(cls, crawler):
        return cls(
            mongo_uri=crawler.settings.get('MONGO_URI'),
            mongo_db=crawler.settings.get('MONGO_DATABASE', 'items')
        )

    def open_spider(self, spider):
        # 打开连接
        self.client = pymongo.MongoClient(self.mongo_uri)
        # db_auth因为我的mongodb设置了认证,所以需要这两步,未设置可以注释
        self.db_auth = self.client.admin
        self.db_auth.authenticate("admin", "password")
        self.db = self.client[self.mongo_db]

    def close_spider(self, spider):
        self.client.close()

    def process_item(self, item, spider):
        # 这里使用update方法
        self.db[self.collection_name].update({'url_token': item['url_token']},  dict(item), True)
        return item

这里要说一说update方法,update() 方法用于更新已存在的文档。语法格式如下:

db.collection.update(
   <query>,  # update的查询条件,类似sql update查询内where后面的
   <update>, #  update的对象和一些更新的操作符(如$,$inc...)等,也可以理解为sql update查询内set后面的
   {
     upsert: <boolean>, # 可选,这个参数的意思是,如果不存在update的记录,是否插入objNew,true为插入,默认是false,不插入。
     multi: <boolean>, # 可选,mongodb 默认是false,只更新找到的第一条记录,如果这个参数为true,就把按条件查出来多条记录全部更新
     writeConcern: <document> # 可选,抛出异常的级别。
   }
)

使用update方法,如果查询数据存在的话就更新,不存在的话就插入dict(item),这样就可以去重了。

settings配置

在这里插入图片描述
再次运行spider后结果如下:在这里插入图片描述
也可以看到mongodb中数据,如下:
在这里插入图片描述
在这里插入图片描述


本文转载:CSDN博客