前言
本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。
PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取
python免费学习资料以及群交流解答点击即可加入
代码:
import requests
from bs4 import BeautifulSoup
import re
import random
import time
# 爬虫主函数
def mm(url):
# 设置目标url,使用requests创建请求
header = {
"User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36"}
req0 = requests.get(url=url, headers=header)
req0.encoding = "gb18030" # 解决乱码问题
html0 = req0.text
# 使用BeautifulSoup创建html代码的BeautifulSoup实例,存为soup0
soup0 = BeautifulSoup(html0, "html.parser")
# 获取最后一页数字,对应-122(对照前一小节获取尾页的内容看你就明白了)
total_page = int(soup0.find("div", class_="pagers").findAll("a")[-2].get_text())
myfile = open("aika_qc_gn_1_1_1.txt", "a", encoding='gb18030', errors='ignore') # 解决乱码问题
print("user", " 来源", " 认为有用人数", " 类型", " comment")
NAME = "user" + " 来源" + " 认为有用人数" + " 类型" + " comment"
myfile.write(NAME + "\n")
for i in list(range(1, total_page + 1)):
# 设置随机暂停时间
stop = random.uniform(1, 3)
url = "http://newcar.xcar.com.cn/257/review/0/0_" + str(i) + ".htm"
req = requests.get(url=url, headers=header)
req.encoding = "gb18030" # 解决乱码问题
html = req.text
soup = BeautifulSoup(html, "html.parser")
contents = soup.find('div', class_="review_comments").findAll("dl")
l = len(contents)
for content in contents:
tiaoshu = contents.index(content)
try:
ss = "正在爬取第%d页的第%d的评论,网址为%s" % (i, tiaoshu + 1, url)
print(ss) # 正在爬取的条数
try:
# 点评角度
comment_jiaodu = content.find("dt").find("em").find("a").get_text().strip().replace("\n",
"").replace(
"\t", "").replace("\r", "")
except:
comment_jiaodu = "sunny"
try:
# 点评类型
comment_type0 = content.find("dt").get_text().strip().replace("\n", "").replace("\t", "").replace(
"\r",
"")
comment_type1 = comment_type0.split("【")[1]
comment_type = comment_type1.split("】")[0]
except:
comment_type = "sunny"
# 认为该条评价有用的人数
try:
useful = int(
content.find("dd").find("div", class_="useful").find("i").find(
"span").get_text().strip().replace(
"\n", "").replace("\t", "").replace("\r", ""))
except:
useful = "sunny"
# 评论来源
try:
comment_region = content.find("dd").find("p").find("a").get_text().strip().replace("\n",
"").replace(
"\t", "").replace("\r", "")
except:
comment_region = "sunny"
# 评论者名称
try:
user = \
content.find("dd").find("p").get_text().strip().replace("\n", "").replace("\t", "").replace(
"\r",
"").split(
":")[-1]
except:
user = "sunny"
# 评论内容
try:
comment_url = content.find('dt').findAll('a')[-1]['href']
urlc = comment_url
headerc = {
"User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36"}
reqc = requests.get(urlc, headers=headerc)
htmlc = reqc.text
soupc = BeautifulSoup(htmlc, "html.parser")
comment0 = \
soupc.find('div', id='mainNew').find('div', class_='maintable').findAll('form')[1].find('table',
class_='t_msg').findAll(
'tr')[1]
try:
comment = comment0.find('font').get_text().strip().replace("\n", "").replace("\t", "")
except:
comment = "sunny"
try:
comment_time = soupc.find('div', id='mainNew').find('div', class_='maintable').findAll('form')[
1].find('table', class_='t_msg').find('div',
style='padding-top: 4px;float:left').get_text().strip().replace(
"\n", "").replace(
"\t", "")[4:]
except:
comment_time = "sunny"
except:
try:
comment = \
content.find("dd").get_text().split("\n")[-1].split('\r')[-1].strip().replace("\n",
"").replace(
"\t", "").replace("\r", "").split(":")[-1]
except:
comment = "sunny"
time.sleep(stop)
print(user, comment_region, useful, comment_type, comment)
tt = user + " " + comment_region + " " + str(useful) + " " + comment_type + " " + comment
myfile.write(tt + "\n")
except Exception as e:
print(e)
s = "爬取第%d页的第%d的评论失败,网址为%s" % (i, tiaoshu + 1, url)
print(s)
pass
myfile.close()
# 统计评论分布
def fenxi():
myfile = open("aika_qc_gn_1_1_1.txt", "r")
good = 0
middle = 0
bad = 0
nn = 0
for line in myfile:
commit = line.split(" ")[3]
if commit == "好评":
good = good + 1
elif commit == "中评":
middle = middle + 1
elif commit == "差评":
bad = bad + 1
else:
nn = nn + 1
count = good + middle + bad + nn
g = round(good / (count - nn) * 100, 2)
m = round(middle / (count - nn) * 100, 2)
b = round(bad / (count - nn) * 100, 2)
n = round(nn / (count - nn) * 100, 2)
print("好评占比:", g)
print("中评占比:", m)
print("差评占比:", b)
print ("未评论:", n)
url = "http://newcar.xcar.com.cn/257/review/0.htm"
mm(url)
fenxi()