netty从twitter发布的这篇《Netty 4 at Twitter: Reduced GC Overhead》文章让国内Java界为之一振,也小火了一把,同时netty的社区发展也不错,版本迭代非常快,半年不关注大、小版本就发了好几轮了。但是mina就有点淡了,github上面它最后大多数代码最后的修改日期均在2013年,不过我从个人情感上还是挺喜欢mina3的代码,没有太多的用不上的功能(支持各种协议啥的),跑自带的benchmark性能也比netty4好一些。但是如果是生产用的话,就偏向netty多一些了,毕竟社区活跃,版本迭代也快。
1. mina、netty的线程模型
mina与netty都是Trustin Lee的作品,所以在很多方面都十分相似,他们线程模型也是基本一致,采用了Reactors in threads模型,即Main Reactor + Sub Reactors的模式。由main reactor处理连接相关的任务:accept、connect等,当连接处理完毕并建立一个socket连接(称之为session)后,给每个session分配一个sub reactor,之后该session的所有IO、业务逻辑处理均交给了该sub reactor。每个reactor均是一个线程,sub reactor中只靠内核调度,没有任何通信且互不打扰。
在我自己的博客里面[Netty 4.x学习笔记 – 线程模型]也对netty的线程模型有一定的介绍。现在来讲讲我对线程模型演进的一些理解:
- Thread per Connection: 在没有nio之前,这是传统的java网络编程方案所采用的线程模型。即有一个主循环,socket.accept阻塞等待,当建立连接后,创建新的线程/从线程池中取一个,把该socket连接交由新线程全权处理。这种方案优缺点都很明显,优点即实现简单,缺点则是方案的伸缩性受到线程数的限制。
- Reactor in Single Thread: 有了nio后,可以采用IO多路复用机制了。我们抽取出一个单线程版的reactor模型,时序图见下文,该方案只有一个线程,所有的socket连接均注册在了该reactor上,由一个线程全权负责所有的任务。它实现简单,且不受线程数的限制。这种方案受限于使用场景,仅适合于IO密集的应用,不太适合CPU密集的应用,且适合于CPU资源紧张的应用上。
- Reactor + Thread Pool: 方案2由于受限于使用场景,但为了可以更充分的使用CPU资源,抽取出一个逻辑处理线程池。reactor仅负责IO任务,线程池负责所有其它逻辑的处理。虽然该方案可以充分利用CPU资源,但是这个方案多了进出thread pool的两次上下文切换。
- Reactors in threads: 基于方案3缺点的考虑,将reactor分成两个部分。main reactor负责连接任务(accept、connect等),sub reactor负责IO、逻辑任务,即mina与netty的线程模型。该方案适应性十分强,可以调整sub reactor的数量适应CPU资源紧张的应用;同时CPU密集型任务时,又可以在业务处理逻辑中将任务交由线程池处理,如方案5。该方案有一个不太明显的缺点,即session没有分优先级,所有session平等对待均分到所有的线程中,这样可能会导致优先级低耗资源的session堵塞高优先级的session,但似乎netty与mina并没有针对这个做优化。
- Reactors in threads + Threads pool: 这也是我所在公司应用框架采用的模型,可以更为灵活的适应所有的应用场景:调整reactor数量、调整thread pool大小等。