前言
之前学过一点点关于全文检索相关的技术,当时使用的是Java语言,Lucene和compass框架。有兴趣的话可以参考下面的专栏链接
http://blog.csdn.net/column/details/lucene-compass.html
然后现在用的是Python了,所以需要迭代一下。网上搜索了下,相关的还真不少,还有pylucene,但是相比较而言,whoosh更为出色。那今天就用它吧。
安装它也比较简单。
pip install whoosh
这样就可以了。
目标: 对自己的博客进行“站内搜索”,来稍微改善一下CSDN站内查找的缺点。
模块化
最近越来越喜欢把任务模块化了,这样单个的功能也比较容易管理,而且整合的时候对集成测试也比较方便。或者添加新功能,重构,都很方便。
针对上面的需求,我这里设计了几个小模块,待会逐个进行解释。
登录模块
登录模块是有点必须的,这是因为在获取博客详细内容的时候,需要有一个已经登录的session会话来支撑,否则拿不到数据。
先前也写过一点关于CSDN模拟登陆的例子,当时完成的功能有
- 模拟登陆
- 顶、踩文章
- 发评论
- 获取博主详情
为了不让别有用心的人拿代码做坏事,我这里就不贴代码了。技术方面欢迎私信,或者在文章下面发评论。
下面把模拟登陆的代码补上。
class Login(object):
"""
Get the same session for blog's backing up. Need the special username and password of your account.
"""
def __init__(self):
# the common headers for this login operation.
self.headers = {
'Host': 'passport.csdn.net',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.110 Safari/537.36',
}
def login(self, username, password):
if username and password:
self.username = username
self.password = password
else:
raise Exception('Need Your username and password!')
loginurl = 'https://passport.csdn.net/account/login'
# get the 'token' for webflow
self.session = requests.Session()
response = self.session.get(url=loginurl, headers=self.headers)
soup = BeautifulSoup(response.text, 'html.parser')
# Assemble the data for posting operation used in logining.
self.token = soup.find('input', {'name': 'lt'})['value']
payload = {
'username': self.username,
'password': self.password,
'lt': self.token,
'execution': soup.find('input', {'name': 'execution'})['value'],
'_eventId': 'submit'
}
response = self.session.post(url=loginurl, data=payload, headers=self.headers)
# get the session
return self.session if response.status_code == 200 else None
博客扫描模块
博客扫描这个模块不需要登录状态的支持,完成的功能是扫描博主的文章总数,以及每个文章对应的URL链接。因为接下来会用它来获取文章的详情。
class BlogScanner(object):
"""
Scan for all blogs
"""
def __init__(self, domain):
self.username = domain
self.rooturl = 'http://blog.csdn.net'
self.bloglinks = []
self.headers = {
'Host': 'blog.csdn.net',
'Upgrade - Insecure - Requests': '1',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.110 Safari/537.36',
}
def scan(self):
# get the page count
response = requests.get(url=self.rooturl + "/" + self.username, headers=self.headers)
soup = BeautifulSoup(response.text, 'html.parser')
pagecontainer = soup.find('div', {'class': 'pagelist'})
pages = re.findall(re.compile('(\d+)'), pagecontainer.find('span').get_text())[-1]
# construnct the blog list. Likes: http://blog.csdn.net/Marksinoberg/article/list/2
for index in range(1, int(pages) + 1):
# get the blog link of each list page
listurl = 'http://blog.csdn.net/{}/article/list/{}'.format(self.username, str(index))
response = requests.get(url=listurl, headers=self.headers)
soup = BeautifulSoup(response.text, 'html.parser')
try:
alinks = soup.find_all('span', {'class': 'link_title'})
# print(alinks)
for alink in alinks:
link = alink.find('a').attrs['href']
link = self.rooturl + link
self.bloglinks.append(link)
except Exception as e:
print('出现了点意外!\n' + e)
continue
return self.bloglinks
博客详情模块
关于博客详情,我倒是觉得CSDN做的真不赖。而且是json格式的。话不多说,看下登录状态下能获取到的博客的详细内容吧。
这下思路很清晰了,就是要获取标题,URL,标签,摘要描述, 文章正文内容。代码如下:
class BlogDetails(object):
"""
Get the special url for getting markdown file.
'url':博客URL
'title': 博客标题
'tags': 博客附属标签
'description': 博客摘要描述信息
'content': 博客Markdown源码
"""
def __init__(self, session, blogurl):
self.headers = {
'Referer': 'http://write.blog.csdn.net/mdeditor',
'Host': 'passport.csdn.net',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.110 Safari/537.36',
}
# constructor the url: get article id and the username
# http://blog.csdn.net/marksinoberg/article/details/70432419
username, id = blogurl.split('/')[3], blogurl.split('/')[-1]
self.blogurl = 'http://write.blog.csdn.net/mdeditor/getArticle?id={}&username={}'.format(id, username)
self.session = session
def getSource(self):
# get title and content for the assigned url.
try:
tempheaders = self.headers
tempheaders['Referer'] = 'http://write.blog.csdn.net/mdeditor'
tempheaders['Host'] = 'write.blog.csdn.net'
tempheaders['X-Requested-With'] = 'XMLHttpRequest'
response = self.session.get(url=self.blogurl, headers=tempheaders)
soup = json.loads(response.text)
return {
'url': soup['data']['url'],
'title': soup['data']['title'],
'tags': soup['data']['tags'],
'description': soup['data']['description'],
'content': soup['data']['markdowncontent'],
}
except Exception as e:
print("接口请求失败! 详细信息为:{}".format(e))
搜索模块
搜索模块是今天的核心,使用到的库就是whoosh, 真的是很贴心的一个库,而且文档详细,简单易懂。我这蹩脚的英文水平都可以,你也一定可以的。
上一道小菜: http://whoosh.readthedocs.io/en/latest/
默认的文本分析器是英文的,所以为了更好的照顾到中文相关,就得处理一下中文分词,于是在网上抄了一个,不过效果不咋地。
class ChineseTokenizer(Tokenizer):
def __call__(self, value, positions=False, chars=False, keeporiginal=False,
removestops=True, start_pos=0, start_char=0, mode='', **kwargs):
assert isinstance(value, text_type), "%r is not unicode"%value
t = Token(positions=positions, chars=chars, removestops=removestops, mode=mode, **kwargs)
# 使用jieba分词,分解中文
seglist = jieba.cut(value, cut_all=False)
for w in seglist:
t.original = t.text = w
t.boost = 1.0
if positions:
t.pos = start_pos + value.find(w)
if chars:
t.startchar = start_char + value.find(w)
t.endchar = start_pos + value.find(w) + len(w)
yield t
def ChineseAnalyzer():
return ChineseTokenizer()
class Searcher(object):
"""
Firstly: define a schema suitable for this system. It may should be hard-coded.
'url':博客URL
'title': 博客标题
'tags': 博客附属标签
'description': 博客摘要描述信息
'content': 博客Markdown源码
Secondly: add documents(blogs)
Thridly: search user's query string and return suitable high score blog's paths.
"""
def __init__(self):
# define a suitable schema
self.schema = Schema(url=ID(stored=True),
title=TEXT(stored=True),
tags=KEYWORD(commas=True),
description=TEXT(stored=True),
content=TEXT(analyzer=ChineseAnalyzer()))
# initial a directory to storage indexes info
if not os.path.exists("indexdir"):
os.mkdir("indexdir")
self.indexdir = "indexdir"
self.indexer = create_in(self.indexdir, schema=self.schema)
def addblog(self, blog):
writer = self.indexer.writer()
# write the blog details into indexes
writer.add_document(url=blog['url'],
title=blog['title'],
tags=blog['tags'],
description=blog['description'],
content=blog['content'])
writer.commit()
def search(self, querystring):
# make sure the query string is unicode string.
# querystring = u'{}'.format(querystring)
with self.indexer.searcher() as seracher:
query = QueryParser('content', self.schema).parse(querystring)
results = seracher.search(query)
# for item in results:
# print(item)
return results
演示
好了,差不多就是这样了。下面来看下运行的效果。
案例一
首先看下对于DBHelper这个关键字的搜索, 因为文章过多的话计算也是比较慢的,所以就爬取前几篇文章好了。
# coding: utf8
# @Author: 郭 璞
# @File: TestAll.py
# @Time: 2017/5/12
# @Contact: 1064319632@qq.com
# @blog: http://blog.csdn.net/marksinoberg
# @Description:
from whooshlearn.csdn import Login, BlogScanner, BlogDetails, Searcher
login = Login()
session = login.login(username="Username", password="password")
print(session)
scanner = BlogScanner(domain="Marksinoberg")
blogs = scanner.scan()
print(blogs[0:3])
blogdetails = BlogDetails(session=session, blogurl=blogs[0])
blog = blogdetails.getSource()
print(blog['url'])
print(blog['description'])
print(blog['tags'])
# test whoosh for searcher
searcher = Searcher()
counter=1
for item in blogs[0:7]:
print("开始处理第{}篇文章".format(counter))
counter+=1
details = BlogDetails(session=session, blogurl=item).getSource()
searcher.addblog(details)
# searcher.addblog(blog)
searcher.search('DbHelper')
# searcher.search('Python')
代码运行结果如下:
不难发现,本人博客只有前两篇是关于DBHelper 的文章,所以命中了这两个document。看起来还不错。
案例二
下面再来试试其他的关键字。比如Python。
# coding: utf8
# @Author: 郭 璞
# @File: TestAll.py
# @Time: 2017/5/12
# @Contact: 1064319632@qq.com
# @blog: http://blog.csdn.net/marksinoberg
# @Description:
from whooshlearn.csdn import Login, BlogScanner, BlogDetails, Searcher
login = Login()
session = login.login(username="username", password="password")
print(session)
scanner = BlogScanner(domain="Marksinoberg")
blogs = scanner.scan()
print(blogs[0:3])
blogdetails = BlogDetails(session=session, blogurl=blogs[0])
blog = blogdetails.getSource()
print(blog['url'])
print(blog['description'])
print(blog['tags'])
# test whoosh for searcher
searcher = Searcher()
counter=1
for item in blogs[0:10]:
print("开始处理第{}篇文章".format(counter))
counter+=1
details = BlogDetails(session=session, blogurl=item).getSource()
searcher.addblog(details)
# searcher.addblog(blog)
# searcher.search('DbHelper')
searcher.search('Python')
然后依然来看下运行的效果。
命中了4条记录,命中率也还算说得过去。
总结
最后来总结下。关于whoosh站内搜索的问题, 要向更高精度的匹配到文本结果,其实还需要很多地方优化。QueryParser 这块其实还有很多需要挖掘。
另外高亮显示查找结果也是很方便的。官方文档上有详细的介绍。
最后一步就是中文问题,目前我还没有什么好的办法来提高分词和命中率。